Quasi Invariant Polynomials of a Matrix |
کد مقاله : 1129-SLAA10 |
نویسندگان |
امیر جعفری * دانشکده ریاضی، دانشگاه صنعتی شریف، تهران |
چکیده مقاله |
Let n be a positive integer and A is a square matrix of size n, with entries in a field F. A polynomial p ∈ F[x 1 , . . . , x n ] is called quasi invariant polynomial for A if p(xA) is a constant multiple of p(x) where x is the vector (x 1 , . . . , x n ). In this article, we classify all quasi- invariant polynomials of a given non singular matrix A when F is algebraically closed and of characteristic zero. The classification is done by constructing a canonical basis that will be made precise in the text. |
کلیدواژه ها |
Linear algebra, Invariant polynomial, Jordan normal form, Quasi invariant |
وضعیت: پذیرفته شده برای ارائه شفاهی |